Возбуждимость, проводимость и автоматия сердца
Этапы развития
Для сердца характерна способность сокращаться в течение всей жизни человека, не обнаруживая признаков утомления. Долгое время оставался нерешенным вопрос о том, обусловлена ли эта способность нервными влияниями (нейрогенный механизм), или она является собственным свойством сердечной мышцы (миогенный механизм).
Леонардо да Винчи писал: « .Проследи нервы до сердца и посмотри, сообщают ли они движение сердцу или оно движется само собой». В настоящее время твердо установлено, что нейрогенная гипотеза автоматии сердца, справедливая в отношении многих беспозвоночных животных, не применима к хордовым и к человеку.
Классический опыт, свидетельствующий в пользу миогенной теории, произвел в середине XIX века X. Станниус. В этом опыте было показано, что при наложении лигатуры на сердце лягушки по границе между венозным синусом (место впадения полых вен) и правым предсердием венозный синус продолжает сокращаться с исходной частотой, а предсердия и желудочек (единственный в трехкамерном сердце земноводных) останавливаются. Через 30-40 секунд сокращения желудочка и предсердий возобновляются, но с собственной частотой, меньшей, чем частота сокращений венозного синуса. Иногда возобновление сокращений желудочка происходит только после стимуляции в области сердца между предсердиями и желудочком путем наложения второй лигатуры по атриовентрикулярной борозде. Наложение еще одной лигатуры в нижней трети желудочка приводит к прекращению сокращений верхушки сердца, в то время как остальные отделы продолжают сокращаться в прежнем ритме. При этом возбудимость и сократимость верхушки сердца не нарушаются - в ответ на раздражение (укол иголкой) происходит сокращение.[32]
Позже английский физиолог В. Гаскел показал, что охлаждение сравнительно небольшой зоны в области устья полых вен приводит к остановке сердца у млекопитающих. В 1902 г. в России А. А. Кулябко наблюдал восстановление сократительной активности сердца человека, которое извлекли из трупа, поместили в теплый физиологический раствор и некоторое время массировали.
В результате перечисленных экспериментов было доказано существование механизма обеспечения периодической сократительной активности сердца, автономного по отношению к центральной нервной системе и достаточного для поддержания нормального ритма сердечной деятельности. Результаты опытов X. Станниуса и В. Гаскела указывали также на то, что участки сердечной мышцы, ответственные за ее самовозбуждение (очаги автоматии), имеют ограниченную локализацию и находятся, в частности, в правом предсердии, а также на границе предсердий и желудочков. В дальнейшем было установлено, что клеточными элементами, обеспечивающими автоматию сердца, являются специализированные кардиомиоциты. [16]
Проводящая система сердца
Миогенная природа автоматии сердца в значительной мере является результатом его ранней эмбриональной дифференцировки (зачаток сердца формируется к концу второй недели эмбриогенеза). Тем самым обеспечивается формирование кровеносной системы плода и оптимальный режим снабжения кислородом всех тканей, включая нервную. С другой стороны, автономность кровеносной системы по отношению к нервной необходима вследствие большой зависимости нервной ткани от уровня доставки кислорода. Прекращение кровоснабжения мозга даже на несколько секунд вызывает резкие функциональные нарушения, которые уже через 4-6 мин приводят к необратимым органическим изменениям в ЦНС. Поэтому зависимость сердечной деятельности и всей системы снабжения организма кислородом от состояния ЦНС резко снизила бы адаптивные возможности организма в условиях действия на него экстремальных факторов среды.
Для того чтобы насосная деятельность сердца была эффективной, необходима точная координация сокращений миллионов отдельных клеток сердечной мышцы. Сокращение каждой отдельной клетки вызывается, когда электрический импульс возбуждения (потенциал действия) распространяется по ее мембране. Правильная координация сократительной активности отдельных клеток сердечной мускулатуры достигается, прежде всего, посредством проведения данного потенциала действия от одной клетки к другой через вставочные диски, которые объединяют все клетки сердца в единый функциональный синцитий (т. е. ткань, которая функционирует, как синхронно работающая система).
Кроме того, мышечные клетки в некоторых участках сердца специфично приспособлены для регуляции частоты возбуждения миокарда, пути проведения и скорости распространения импульсов через различные отделы сердца. Основные компоненты этой специализированной системы, отвечающей за процессы возбуждения и проведения в сердце, показаны на рисунке 3.3.2. Она включает синоатриальный узел (SA узел), предсердные межузловые пути, атриовентрикулярный узел (АV узел), общий AV узловой пучок Гиса, правая и левая ножки пучка, состоящие из специализированных клеток, называемых волокнами Пуркинье. SA узел расположен в области впадения верхней полой вены в правое предсердие. Специализированные клетки предсердной мускулатуры этой зоны могут спонтанно генерировать потенциалы действия, которые в дальнейшем распространяются по всему сердцу, вызывая его сокращение. Эта зона SA узла в норме функционирует как внутрисердечный водитель ритма. Потенциал действия далее распространяется по стенке предсердия в виде волны, исходящей из SА узла. Хотя есть некоторые доказательства существования особых путей проведения в предсердии от SА узла к АV узлу через передние, средние и задние межузловые пучки, анатомически эти пути недостаточно различимы.